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A method of determining the constant a in Golubev's equation is given.
‘The values determined in this way are found to be in good agreement
with experimental values.

At present there is no rigorous theory of the vis-
cosity of compressed gases. Hence, there are no theo-
retically based equations which give values in agree-
ment with the experimental data in a wide range of
parameters.

The available equations are empirical or semiem-
pirical and experimental data are required for their
use. The best of these equations is Golubev's equation,
which was derived from simple molecular-kinetic con-
siderations and predicts the experimental data at high
pressures with a high degree of accuracy. This equa~
tion is
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The thermal pressure P is determined from the
thermodynamic relationship
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Introducing the reduced parameters
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In the dimensionless coordinates 7 and 7 the quantity
(87/87T)y=1 = @ represents the slope of the pressure
curve at the critical point or (on the basis of the fun- -
damental Planck-Gibbs rule) the slope of the critical
isochor.

Hence, the value of @, can be determined from the

equation of the equation of state, or from experimental
data.

In view of the above we can determine the constant
a by using the value A, = N(pT)e ~ MTer

1,115
a=Anc/<§-—c ac) .
c

The values of a for some gases were determined in
such a way (Table 1). The values of Ane were taken
from {1] and those of @, from {2]. ;

As the table shows, from the viscosity at the cri-
tical point and the value of o we can determine farily
accurately the constant ¢ in Golubev's eqguation.

For little-investigated substances, however, we
do not usually have experimental values of the vis-
cosity at the critical point. Hence, in this case it is
convenient to use the Grunberg-Nissan semiempirical
equation {3], which has the form

)

=Ko/ T /M = Ke. (5)
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In [4] Swift et al. determined the constant K for
methane, ethane, propane, and n-butane from experi-
mental data and on averaging it for the class of sa-
turated hydrocarbons obtained a value K = 570. The
dimensionality of K is [gl/2 -em/sec - deg /2. molel/B].

We tested the applicability of the Grunberg-Nissan
equation for other substances. The results of the test
are summed up in Table 2, which shows that the equa~
tion can be effectively used to determine the critical
viscosity of any substance with a relatively small error
if K is taken as 594.1. The error does not usually
exceed 5%.

In view of the difficulty of experimental determina-
tion of the viscosity at the critical point and the con-
siderable disagreement of the data of different authors,
such a result can be regarded as quite acceptable,
particularly for uninvestigated substances.

An analysis of Eq. (1) shows that at low and mo~
derate pressures the main contribution to the values
of the viscosity coefficients is due to 1T, the values
of which are usually known to within 1%.

Table 1

Experimental and Theoretical Values of a

. Ang, 107 cal xpt | Error
Substance Pcs atm To, °K =78 c acalc | qexp ..
g/cm - sec %o
Hydrogen . 12,77 32.99 | 4.3 128.1 70.5 73 3.41
Methane 45.8 190.65 | 5.84 799 548 550 1.48
Carbon
dioxide 75.28 304.19 6.91 1700 934 930 0.4
Ammonia 111.5 405.56 | 7.10 1155 548 550 0.36
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Table 2
Determination of the Universal Constant K
. Chemical . expt calc {Error,

Substance formula "(pT)c K TpTe %
Hydrogen* . . . .. . .. H, 0.505 294 583 300.0 | 2
Deuterium®* . . . . .. .. D, 0.810 484 597 481.2 | 0.6
Ammonia* , . . ., .. .. NH, 4,640 2610 563 2756.6 | 5.5
Carbon monoxide*. . . . . CO 2.980 1836 616 1770.4 | 3.5
Nitrogen® . . . ., ., ., .. Ny 2.940 1810 616 1746.6 | 3.5
Al = 0oL — 3.165 1960 618 1880.3 | 4.1 -
Oxygen* . . . . .. .. Oy 3.990 2470 619 2370.5 4.0
Carbon dioxide*; |, . . . .| CO, 5.550 3220 580 3297.3 | 2.4
Methane* = ° '~ | CH, 2,586 1580 610 | 1536.3 | 2.8
Methane® == = = | | CH, 2.586 1500 580 1536.3 | 2.4
Ethane®* |, . .. ... .. GCyH, 3.420 | 2130 623 2031.8 | 4.6
Propane* . , . . . .. .. C3Hg 3.795 2400 631 1 22546 | 6.0
Propane®™ | | . . ... CaHg 3.795 2200 581 22546 | 2,5
n-Butane™ |, . . .. . .. CgHy 3.910 2300 588 2322.9 | 1.0
n-Pentane® . = . . | CiHy; 3.990 2300 577 2370.5 | 3.1
n-Hexane™ . | | | | CgHy 4.070 2300 - 565 2418.0 | 5.1
n-Heptane™ , . . | . . . . CyHy, 4,080 2400 588 24239 | 1.0
n-Octane™ ., . .., . .. CgHys 4.110 2300 5569 2441.8 | 6.2

Kav=
=594.1

*According to Golubev [1].
*According to Swift et al. [4].

Table 3

Dynamic Viscosity of Trichloromonofluoromethane (Freon-11)

n, 107 g/cm - sec at t, °C

bar 120 140 160 180 190 210 220 240

1 1399.5 | 1447.2 | 1495.3 | 1539.2 | 1561.4 1606.8 | 1630.1 | 1673.2
10 1493.0 | 1530.2 | 1569.8 | 1607.0 | 1626.5 1667 .1 1688.3 | 1727.7

20 1727.6 1763.6 1744 .1 1768.9 1783.8 | 1813.2
30 2006.5 1966.3 1937.3 1934.9 | 1938.7
40 2258.0 2194.0 | 2130.16
50 3431.7 2756.8 | 2439.4
60 : 4690.2 4036.5 | 2857.7
70 7003.3 5499.4 {-3910.7
80 8482.8 6494 .3 | 4850.9
90 9943.9 7445.1 | 5520.5
100 11412.3 | 8384.9 | 6082.2
110 12884 .4 9306.4 | 6592.5
120- 14356.5 | 10227.8 | 7066.0
b 7, 107 g/cm-sec att, °C

bar 260 280 300 320 340 360 380 400

1 1716.0 | 1754.9 | 1795.0 | 1835.8 | 1877.8 | 1912.0 | 1949.9 | 1983.8
10 1767.3 | 1803.4 | 1841.1 | 1879.7 | 1919.7 | 1952.1 1988.4 | 2020.8
20 1845.0 | 1873.5 | 1907.2 | 1941.2 | 1977.6 | 2006.8 | 2040.1 | 2070.1
30 1954.0 | 1971.2 | 1994.0 | 2020.5 | 2050.6 | 2074.5 | 2103.5 | 2129.6
40 2107.3 | 2100.3 | 2106.0 | 2120.0 | 2140.2 | 2156.3 | 2179.4 | 2199.6
50 2327.2 | 2274.0 | 2250.2 | 2243.3 | 2248.6 | 2253.7 | 2267.4 | 2280.6
60 2649.6 | 2506.7 | 2433.8 | 2395.6 | 2379.3 | 2406.1 | 2369.9 | 2372.9
70 3127,2 | 2818.1 | 2665.0 | 2580.3 | 2533.1 | 2501.2 | 2487.3 | 2478.3
80 3773.3 | 3221.5 | 2951.8 | 2801.7 | 2713.7 | 2655.9 | 2619.5 | 2595.0
90 4504.2 | 3717.8 | 3269.8 | 3061.9 | 2921.9 | 2826.8 | 2767.5 | 2724.6

100 5113.6 | 4282.5 | 3699.9 | 3365.9 | 3157.5 | 3020.7 | 2931.6 | 2867.4
110 5674.3 | 4830.2 | 4152.2°| 3702.2 | 3423.0 | 3235.1 | 3111.8 | 3022.7
120 5934.1 | 5278.4 | 4619.2 | 4077.0 | 3716.3 | 3472.2 | 3308.9 | 3191.2
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At high pressures the contribation of a(pt/T)?
becomes greater and the error in determining the
viscosity coefficients begins to depend on the accuracy
in determining the constant a.

We can postulate from an examination of Tables 1
and 2 that the error in the determination of the con-
stant a and, hence, of the viscosity coefficients at
high pressurés will not exceed 5%.

Proceeding from the above, we determined the vis-
cosity of CFClg (Freon-11)at the critical point from .
Eq. (3),

NoT)e = 3780-10~" g/cm - sec.

The value of np.. i.e., the viscosity at atmos-
pheric pressure and the critical temperature, was
determined by extrapolation of the available experi-
mental data [5] to the critical temperature (198° C)y
by means of Sutherland's equation. In this case we
obtained

Ny = 1563. 10~ g/cm - sec.

The constant @ for Freon-11, calculated from Eq.
4), was 3671.1. In this case we took p, = 43.73 bar
and Te = 471° K. The average value of 1.115 was taken
as the index of the power n.

The value of 8p/0T)y in Eq. (2) and the value of
@ in Eq. (4) were caleulated from the equation of
state, which was derived from the correlation of the
law of corresponding states [6] and has the form

G = Uy -+ 0qT -+ 3P+ .

A comparison of the theoretical value ag = 6.85
with the data given in [2] showed good agreement (ac-
cording to [2], a¢ = 6.72). Finally, the equation for
calculation of the coefficients of dynamic viscosity of
Freon-11 takes the form

=, +3671.7 { 0.3429380 | 084969 — 0.23550a?—

L .
—0.1117350% + 1.0209860° — 0.4810760° + 1.000— —— X
T

in

X (0.213680w — 0.040869® + 0.397550" — 0.52321 1w’ &
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+ 0.2622370%) - —— (0.02048 10 — 0.0227750° +
. ,

+ 0.024600* +- 0.006280°) ]}”15 . (6)

From Eqg. (6) we calculated the values of the vis-
cosity coefficients of Freon-11 is the pressure range
1-120 bar and the temperature range 0°—~400° C. These
values are given in Table 3.

NOTATION

MpT is the viscosity of compressed gas at tempera~-
ture T and pressure p; 7y is the viscosity of gas at
temperature T and atmospheric pressure; p, is the
critical pressure; T, is the critical temperature; V, is
the critical specific volume; p, is the critical density;
M is the molecular weight; K is the universal constant
in Grunberg-Nissan equation; ag, oy, B8, Y are the
polynomials in powers of dimensional density w in
equation of state; ¥, ¢ are the diminishing functions of
reduced temperature T in equation of state; o = pV/RT
is the dimensionless group in equation of state.
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